(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-132517

(43)公開日 平成6年(1994)5月13日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	ΓI	技術表示箇所
H01L 29/28				

審査請求 未請求 請求項の数3(全 8 頁)

(21)出顧番号	特顯平3-160184	(71)出願人	591142116 日野 太郎
(22)出願日	平成3年(1991)4月8日	(72)発明者	神奈川県横浜市港北区篠原西町37番18号 日野 太郎 神奈川県横浜市港北区篠原西町37番18号

(54)【発明の名称】 誘電体ヘテロ構造による導電膜と絶縁膜

(57)【要約】 (修正有)

【目的】誘電体と云う本来絶縁物質であるものによって 導体から絶縁体を実現するもので、従来の技術には全く 見られない新素材を生み出す技術に関係している。 【構成】誘電体であるラングミュア・プロジェット(L angmuir-Blodgett、LB)膜の有極性 膜(Z形膜)と無極性膜(Y形膜)とを重ねて累積した 誘電体へテロ膜において、累積の順序を互いに逆にした [無極性膜/有極性膜]と[有極性膜/無極正膜]のへ テロ膜の抵抗が大きく変化することに関するものであ る。すなわち前者では極めて良い導電膜となるが後者は 絶縁性を示し、導電率で云えば前者は後者の106~1 09倍にもなる。 【特許請求の範囲】

(1)有極性と無極性の誘電体膜或いは分極方向の異なる二つの有極性膜を重ねたヘテロ膜で作られる金属と同じ程度或いはそれ以上の導電率を持つ導電膜と電気絶縁に使用出来る絶縁膜。

(2)上記の誘電体ヘテロ構造を持つ膜の中の少なくと も片方の有極性の誘電体膜がラングミュア・プロジェッ ト(Langmuir - Blodgett,LB)膜で あることを特徴とする導電膜と絶縁膜。

(3)上記(1)及び(2)項の誘電体ヘテロ膜を面方 向の抵抗の大きい金属膜で挟んだ構造を特徴とする導電 膜と絶縁膜。

【発明の詳細な説明】

産業上の利用分野

本発明の誘電体ヘテロ構造による導電膜と絶縁膜(以後 これを誘電体ヘテロ膜と云う)は有極性と無極性の誘電 体膜或いは異なった有極性の誘電体膜を重ねた構造を持 ち、これらの膜を重ねる順序を変えるだけで、金属に匹 敵する高い導電率を持つ導電膜と十分絶縁に利用出来る 絶縁膜とを作製出来るもので、この両膜を併用すれば電 子回路の構成が可能になる。ことに将来の分子エレクト ロニクスには有用な新素材であると考えられる。

従来の技術

電動機、発電機、変圧器などの電力機器或いはIC、L SI等の電子素子など総ての電気製品のおいて、現在ま で導体には導電性物質である金属が、絶縁体には絶縁物 質である高分子物質や金属酸化物が用いられて来た。本 発明は誘電体と云う本来絶縁物質であるものによって導 体から絶縁体を実現するもので、従来の技術には全く見 られない新素材を生み出す技術に関係している。

発明が解決しようとする問題点

次世代の技術と見られる分子エレクトロニクスでは、有 機分子の多彩な機能と素子の極微細化が注目されている が、この中で機能素子の構築と平行して極微細導線によ る回路の作製が必要になって来る。分子導線とも云うべ きこの導線はやはり分子オーダーの大きさで作る必要が あり、本発明の様に数十の超薄膜で導電性と絶縁性が 得られる膜は将来分子エレクトロニクスに利用出来る。 問題を解決する手段

分子の大きさ程度に極めて薄い膜は、現在ではラングミ ュア・プロジェット(LB)膜で作製出来るだけであ る。そして実施例に示す様に、この膜に依れば上述のよ うに極めて薄い導電膜と絶縁膜を自由に作製することが 可能である。

実施例

次に本発明の誘電体へテロ膜による導電膜と絶縁膜の実施例について図面を参照して説明する。図1は本発明の 誘電体へテロ膜の導電膜を示す実施例の概略図である。 シリコン基板(1)の上のSiO2絶縁膜(2)の上 に、薄いA1蒸着膜(3)が付着され、その上に無極性 膜(4-1)と有極性膜(4-2)で作られた[無極性 / 有極性]の誘電体ヘテロ膜(4)が形成される。そし てその上に薄いAu蒸着膜(5)が付着される。更にA u 蒸着膜(5)の上に1~9のAu 電極が蒸着される。 A1蒸着膜の抵抗は膜面方向に幅10mmの電極一対を 30mm離して取り付けて測定し約1.5「K]であ り、Au 蒸着膜の値は107 []以上であって、両方 の蒸着膜とも抵抗値は大きい。又、A1とAuの蒸着膜 は図の様に一端で接触している。なお、有極性膜(4- 2)を先にA1蒸着膜(3)に着け、次に無極性膜(4) - 1) 付着させた [有極性 / 無極性] 構造を作ると、こ の誘電体へテロ膜は絶縁膜になる。表1には本発明の誘 電体ヘテロ膜の実施例とその構造を示す。無極性膜とし てはY形のアラキジン酸(arachidic aci d, C₂₀)のLB膜有極性膜としてはZ形の C₁₅ · TCNQ(2 - pentadecyl - 7, 7', 8, 8'-tetracy-anoquinod imethane, TCNQ)のLB膜 プロトポルフィリン(protoporphyrin dimethylester, PPDM)のLB膜 メソポルフィリン(mesoporphyrin di methylester,MPDM)のLB膜 ポリアミド(polyamic acid alkyl amine salt, PAAS)のLB膜 などが用いられ、これらの誘電体へテロ膜の実施例のA 1蒸着膜とAu蒸着膜の抵抗値もあげられている。図1 には三端子測定法の回路も併記してあるのでこれを説明 する。先ず接地電極 p を任意に選んで電極1 - p 間に電 圧Vを印加し、電極p-1、p-2、p-3、---、 p-9間の電圧を測定するのが三端子測定法である。こ こには図示してないが、両側の電極1-9間に電圧Vを 印加して電流を流しておき、任意の電極間の電圧(電圧 降下)を測定してその間の抵抗値を求めるのが四端子測 定法である。図2には本発明の実施例である導電膜と絶 縁膜の四端子測定による結果を示す。LB膜によって構 成された表1に示す「無極性/有極性]及び「有極性/ 無極性1の構造の4種の誘電体へテロ膜について、各電 極の電圧降下が示されている。 [無極性/有極性]構造 の

C20/C15・TCNQ と C20/PPDM の試料では、両端の電流が流出入する電極1と9を除く 区間の電極2-8間では電圧降下が小さくなり、特にC 20/C15・TCNQではこれらが極めて小さく、電 流と電圧降下の値から求められる隣接電極間の抵抗は約 10-2[]であり、表1に示すA1やAuの蒸着膜 の抵抗より十分小さい。従って、電流は誘電体であるL Bへテロ膜の面内を通っていると考えられ、LB膜の断 面積{10(mm)×300()}から計算して、抵 抗率は10-8[・cm]程度であり、この値は金属 の抵抗率である10-5~10-6[・cm]に比べ てはるかに低い超低抵抗率である。C20/PPDMの 抵抗率は最も低い電極間で金属の抵抗率程度である。こ れに対して、無極性LB膜と有極性LB膜とを逆の順序 に重ねた[有極性/無極性]構造の

C15・TCNQ/C20 と PPDM/C20 の試料では、電極間の電圧降下はほぼ均一で抵抗も大き く(電流が小さく)、その値はほぼAu蒸着膜の抵抗値 に等しくなった。図3は[無極性/有極性]構造のC 15/TCNQの試料についての三端子測定結果の実施 例を示す。接地電極pを種々変えて測定されているが、 電極2-(p-1)間では電圧降下が極めて小さい。こ れは図2の同試料についての四端子測定結果と同様に、 上記電極間の抵抗が極めて小さいことを示している。又 この

試料では、

電極p - n間(n > p)で

も十分な

電圧 が発生している。このことは図5で説明する様に、電流 が試料の表面のAu蒸着膜を通ることなく、膜の内部の 層に入って流れていることを示している。図4は図3と 同じ有極性と無極性のLB膜C15・TCNQとC20 を逆順序に重ねた[有極性/無極性]構造のTCNQ/ C20の試料についての三端子測定の結果である。図に 見られる様に、電流は10⁻⁸[A]と非常に小さく、 これは丁度 A u 蒸着膜中を電流が流れているときの値で ある。又、電極1 - p間の電圧降下はほぼ均一で、やは り試料表面のAu蒸着膜を電流が通っていることを示し ている。更に電極p - n間には電圧が発生していない。 このことも図5で説明する様に、電流がAu蒸着膜を通 過していることを示す。図5は図1に示した誘電体ヘテ 口膜試料に等価な抵抗回路を示す。R1、R2、R3及 びR4はAu蒸着膜(5)、誘電体へテロ膜(4)、A 1 蒸着膜(3) 及びシリコン基板(1)の隣接電極間の 膜面方向抵抗を示し、r1、r2及びr3はAu蒸着膜 と誘電体へテロ膜の間に生じる障壁II(7)、該障壁 とA1蒸着膜との間に出来る障壁I(6)及びSiO2 膜(2)などをこれらの膜面に垂直に電流が通過すると きの抵抗を示す。電流がI2で図示する様に誘電体へテ ロ膜中を流れるときは、電極p点と点p1との間に電圧 降下vso $v_{so} = r_1 I_2$ (1)

が発生する。A u 蒸着膜の抵抗R 1 は表1に挙げた様に 107[]以上と大きく、誘電体へテロ膜の抵抗R 2 と障壁IIの抵抗r 1 はR 1 に対して小さく R 1 R 2、 R 1 r 1 (2) が成立すれば、電極p - n間に発生する電圧 v s は v s v s o = r 1 I 2 (3) となり、nがどの電極であってもp > nである限り、電 極p - n間の電圧は等しくなる。以上の関係は図 2 の C 20/TCNQの試料に見られる。又、電流がI 1 で示 す様に、試料表面のA u 蒸着膜を通っていれば、電極 1 - p間の電圧降下はA u 蒸着膜の抵抗R 1 によるもの で、どの電極区間でもほぼ均一になるであろう。又、R

1が大きいので電流は非常に小さくなる。更に、電極 p - n間に電圧は発生しない。このことは図4の[有極性 / 無極性]構造のTCNQ/C20試料の測定結果に現 われている。図6は[無極性/有極性]または[有極性 / 無極性]の試料の膜面に垂直な断面のポテンシャルを 示す図である。図の(a)において、誘電体ヘテロ膜 (4)の両側にあるAlとAuの蒸着膜(3)と(5) を同電位(短絡)にすると、有極性膜の分極電荷 ± Pに よってA1とAuの蒸着膜に±Qの電荷が誘起され、無 極性膜には±qの分極電荷が発生する。又、有極性膜自 体にも ± p ' の分極電荷が誘起される。これらの電荷に よって、誘電体ヘテロ膜を形成している無極性膜(4- と有極性膜(4-2)の中に電界E1とE2生じ、 誘電体ヘテロ膜の中には図の様に深さ日のポテンシャル 井戸が出来る。この井戸はA1蒸着膜と無極性膜との間 又はAu蒸着膜と有極性膜との間の障壁の高さ よりも 十分大きくなり、従って井戸はAlとAuのフェルミ準 位より深くなって井戸には電子ガスが充満して、紙面に 垂直方向の井戸の抵抗はたいへん低くなる。この結果、 電極からAu蒸着膜を通して井戸へ電流が流れるときの 障壁抵抗 r 1 は非常に小さくなる。すなわち [無極性 / 有極性]構造の試料では式(2)の関係が成立し、電流 は誘電体ヘテロ膜中に発生する深いポテンシャル井戸の 中を流れ超低抵抗の導電膜が出来る。これに対し、図の (b)の[有極性/無極性]構造の試料では、図の (a)に示した試料とは有極性膜と無極性膜を重ねる順 序が逆になり、結果として電界 E1とE2の方向が共に 正負逆転し、ポテンシャル井戸が発生せず、誘電体ヘテ ロ膜のポテンシャル障壁はかえって高くなる。従って誘 電体ヘテロ膜は絶縁性を高め、電流はAu 蒸着膜からへ テロ膜へ入ることが出来ず、抵抗の大きいAu蒸着膜を 面方向に流れることになる。図7は図3と図4に特性を 示したC₂₀/TCNQとTCNQ/C₂₀の試料につ いて膜面に垂直な方向の抵抗を比較したものである。す なわち、図6のA1とAuの蒸着膜を両電極として測っ た場合の電流・電圧特性である。図中(a)に示す直線 は

「

無極性 / 有極性] 構造の

C 2 0 / T C N Q 試料の特 性である。これはオーミックで抵抗は2 []と低く、 図6の(a)の様にポテンシャルが発生していて障壁抵 抗(r1+r2)が上記の2[]程度であるものと考 えられる。これに対して有極性膜と無極性膜が逆順序に 重ねられた[有極性/無極性]構造TCNQ/C20の 試料では、非直線的な電流・電圧特性となり、抵抗値は 10¹⁰[]程度と非常に大きい。図6の(b)の様 に誘電体ヘテロ膜の障壁が高くなって抵抗が増大したも のと考えられる。図8は[無極性/有極性]構造のC 20/TCNQの試料について電極の直下の障壁抵抗r 1を示す図である。抵抗値は1.5~500[]と小 さい。この値は次のようにして求められた。すなわち、 図3の電極p-n間の発生電圧vsと電流I2から式

(3)によってr1が計算され、例を示せば、電極4 r 1 = v s / I 2 = 0 . 2 3 V / 0 . 0 8 8 A = 2 . 6 []

と求められる。表2には有極性膜としてC15・TCN Qとその他のPPDM、MPDM、PAASのLB膜を 用いた誘電体ヘテロ膜の導電性と絶縁性を示す。すなわ ち [無極性/有極性]構造の膜ではいずれも導電性を示 し、「有極性/無極性」構造のものでもすべて絶縁性を 現していて、これらの絶縁膜と導電膜との抵抗値の比は 109にもなっている。なお、絶縁性を示す膜もその表 面にAu蒸着膜があり、抵抗はこのAu蒸着膜の値以上 にはならないが、Au蒸着膜を用いなければもちろん抵 抗値は更に増大し10¹³[]以上に達して、上述の 抵抗比は1015以上にもなる。これまでの実施例で説 明したように、本発明は本来絶縁性を有する有極性と無 極性の誘電体膜を組み合わすことによって、金属以上の 導電性を有する膜から通常の絶縁に用いられる絶縁膜ま で簡単に実現出来るものである。

図1は本発明の誘電体へテロ構造による導電膜の実施例

【図面の簡単な説明】

(p=4)の直下の障壁抵抗r1は

とその電気特性を測定する回路を示す概略図、図2は本 発明の[無極性/有極性]と[有極性/無極性]構造の 膜つまり導電膜と絶縁膜の実施例について膜面方向の抵 抗による電圧降下を示す図、図3は本発明の導電膜の実 施例について三端子測定による電圧降下測定の結果を示 す図、図4は本発明による絶縁膜の実施例について三端 子測定による電圧降下の測定結果を示す図、図5は本発 明の導電膜の実施例の等価抵抗回路を現した図、図6は 本発明の導電膜と絶縁膜の実施例について膜面に垂直な 断面のポテンシャルを示す図、図7は本発明の導電膜と 絶縁膜の実施例について膜面に垂直に測定した電流・電 圧特性を示す図、図8は本発明の導電膜の実施例におけ る障壁抵抗を示す図、表1は本発明の導電膜と絶縁膜の 実施例の諸定数を示す表、表2は各種の有極性、無極性 の膜を用い本発明の実施例である誘電体へテロ膜の導電 膜と絶縁膜の抵抗を示す表である。

記号	誘電体ヘテロ構造	A1蒸着膜の抵抗(kQ)	Au蒸着膜の抵抗(Q)
C20/PPDM	A1/C ₂₀ (4L)/PPDM(7L)/Au [無極性/有極性]	4.0	>107
PPDM/C20	A1/PPDM(7L)/C ₂₀ (6L)/Au [有極性/無極性]	2.0)107
C₂₀/MPDM	A1/C20(6L)/MPDM(7L)/Au [無極性/有極性]	1.5	>107
MPDM/Czo	A1/MPDM(7L)/C20(6L)/Au [有極性/無極性]	1.0	>107
C _{zo} /PAAS	A1/C₂₀(4L)/PAAS(6L)/Au [無極性/有極性]	0.88	>10'
PAAS/C20	Al/PAAS(6L)/C2o(4L)/Au [有極性/無極性]	0.88	>107
C20/TCNQ	Al/C2a(5L)/Cis·TCNQ(5L)/Au [無極性/有極性]	0.60	>107
TCNQ/C20	AI/Cıs•TCNQ(4L)/C₂₀(4L)/A [有極性/無極性]	2.1	>107

【表1】

C20: アラキジン酸(arachidic acid)LB膜、

PPDN: プロトボルフィリン(protoporphyrin dimethyl ester)LB膜

MPDM: メソポルフィリン(mesoporphyrin dimethyl ester)LB膜

PAAS: ポリアミド(polyamic acid alkylamine salts=polyamic acid に N, N-dimethyl-N= hexadecylamineを加付したもの)LB膜

C15 TCNQ: 2-pentadecyl-7,7',8,8'-tetracyanoquinodimethane

4L, 5L, ---: 4单分子層、5单分子層---

抵抗値:Au、Al膜の抵抗は幅10mmで長さ30mmの面方向の値

LBヘテロ膜	電流(A)	抵抗(Ω)∗	抵抗比 **
C20/PPDM	1.0x10 ⁻¹ (1V印加)	1. 0x10 ⁻¹	1.0x10 ⁹
PPDM/C20	2.0x10 ⁻⁹ (1V印加)	1. 0x10 ⁴	
C20/MPDM	3.0x10 ⁻² (1V印加)	2. 4x10 ¹	2.7x10 ⁵
MPDM/C20	1.2x10 ⁻⁸ (1V印加)	6. 4x10 ⁷	
C20/PAAD	6. 0x10 ⁻³ (1V印加)	6. 0x10 ¹	8.3x10 ⁸
PAAD/C20	3. 0x10 ⁻¹¹ (1V印加)	5. 0x10 ¹⁰	
C ₂₀ /TCNQ	7.5x10 ⁻² (1V印加)	1.0x10 ⁻²	1.1x10°
TCNQ/C ₂₀	2.0x10 ⁻⁸ (1V印加)	1.1x10 ⁷	

*: 電極幅10mm、電極間隔3.3mmの抵抗値

**: [有極性/無極性] と [無極性/有極性] LBへテロ膜の抵抗の比
 (例えば、PPDM/C20とC20/PPDMのLBヘテロ膜の抵抗の比)

【図1】

【図8】

【手続補正書】

【提出日】平成5年8月31日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

【図面の簡単な説明】

【図1】は本発明の誘電体ヘテロ構造による導電膜の実施例を示す平面図(上部の図)とその電気的特性を測定する回路も併記した断面図(下部の図)などの概略図、 【図2】は本発明の[無極性/有極性]と[有極性/無 極性]構造の膜、つまり導電膜と絶縁膜の実施例につい て膜面方向の抵抗による各電極の電圧降下を示す図、 【図3】は本発明の導電膜の実施例について三端子測定 による各電極の電圧降下を示す図、

【図4】は本発明の絶縁膜の実施例について三端子測定 による各電極の電圧降下を示す図、

【図5】は本発明の導電膜の実施例の等価抵抗回路を示した図、

【図6】は本発明の導電膜と絶縁膜の実施例について膜 面に垂直な断面のポテンシャルを示す図、

【図7】は本発明の導電膜と絶縁膜の実施例の膜面に垂 直な方向に測定した電圧 - 電流特性を示す図、

【図8】は本発明の導電膜の実施例における障壁抵抗を 示す図である。

【符号の説明】

V

【図1】1、p、n、9 - - - 電極

- - - 電源

V S 電圧計	p 1 p 電極の下のヘテロ膜の位置
【図2】V 電極1~9間に印加された電圧	I 1 A u 膜を流れる電流
∨ s 電極1~9間の他の電極の電圧	I ₂ ヘテロ膜を流れる電流
I 電極1~9間に流れる電流	∨ 電源
【図3】I 電極1~接地電極間に流れる電	I 外部回路電流
流。例えば電極1~p間に流れる電流は88mA	V S 電圧計
【図5】R 1 電極p - (p + 1)間のA u の	【図6】H ポテンシャルの深さ
抵抗。各隣接電極間で同じ。	障壁の高さ
R 2 隣接電極間の下の誘電体ヘテロ膜の抵抗	E1、E2 LB膜中に生じた電界
R3 隣接電極間の下のA1膜の抵抗	±p 有極性膜に存在している電荷
R4 隣接電極間の下のシリコンウエーハの抵	±Q、±q、±p'電極及び各LB膜に誘起される
抗	電荷
r 1 各電極の下の障壁IIの抵抗	1、 2 各LB膜の誘電率
r 2 各電極の下の障壁 I の抵抗	d 1、d 2 各LB膜の厚さ
r 3 各電極の下のSiO ₂ 絶縁膜の抵抗	【図 7 】a , b 軸の目盛りを変えた記号
p p 番目の電極	

(8)